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This paper deals with the pointwise saturation problem for the Abel means
of Fourier series. Most of the known results on pointwise approximation in
connection with summation processes of Fourier series are Jackson-type
theorems. (See the books of N. Achieser, P. P. Korovkin, and I. P. Natanson
on approximation theory. We wish also to refer to the results due to G. Alexits
and his school, cf. [I] and [5]). Here we shall study a Bernstein-type problem
for the Abel means, i.e., a converse of the Jackson-type problems. But we
shall study it only in case of saturated approximation. Although this type of
question has been studied for several years, only a few results are available.
Bajsanski-Bojanic [3] proved a pointwise "o"-theorem for the Bernstein
polynomials, and recently V. A. Andrienko [2] studied this problem for the
Fejer means of Fourier series. A generalization of his result was given by the
author [4]. On the other hand, these problems are closely connected with
theorems concerning generalized derivatives of functions which have their
origin in Schwarz's theorem [9, p. 431] and its generalizations due to
C. de la Vallee Poussin (see [7] for more recent results).

Throughout this paper we shall deal with the space L 27T of Lebesgue
integrable real-valued functions f(x) which are periodic with period 217.
Let f be in L 27r ; we denote

00

f(x) ,......, iao+ L Ak(x),
k=l

where ak , bk are the Fourier coefficients off Its conjugate series is defined by
00

f-(x) ,......, L Bk(x),
k=l

Bix) = ak sin kx - bk cos kx.

The Abel means of f(x) and rex) are given, respectively, by
00 00

fer, x) = tao + L rkAk(x) and r(r, x) = L rkBk(x),
k=l k=l
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The saturation theorem for the Abel means states the following. Let X2"

be one of the spaces C2" or L:", 1 ;( p < m.

(a) Iff, g in X2" are such that

lim Ilf(r, .) - f(-) - gO II = 0,
T-:l-l- 1 - r IX;;!T,'"

(1)

then f- is absolutely continuous and f-' = -g, and vice versa. If. in
particular, g = 0, i.e., II fer, .) - fOllx = 0(1 -- r) as r -+ 1-, then

9"f = const. -

(b) For anf in X 2" the following statements are equivalent:

(i) Ilf(r,') - fOllx
2

" = 0(1 - r)

(ii) f- E Lip{l, X2,,)·

Part (a) ofthe theorem goes back to E. Hille, while part (b) is due to Butzer
for L:,,-spaces, 1 < p < ro, and to Sunouchi-Watari for the spaces C2"

and L 217 (see [6, p. 1l8]).
What can be said about the function f(x) if the limit

lim (f(r, x) - f(x»/{l - r) = g(x)
r->1

exists pointwise? In case g(x) c= 0, we have the so-called pointwise
"0"-theorem.

The main result, Theorem 1, is stated and proved in the next section, while
in the final section we study its major consequences.

2

THEOREM 1. Let fE L2" be finite in some interval (a, b) and such that
limH-f(r, x) = f(x)for all x E (a, b). [f

lim (f(r, x) - f(x»/(l - r) = g(x)
r...",t-

exists finitely for all x E (a, b), with g(x) integrable, then for almost all x in
(a, b),

where C is some constant.

f-(x) = c - rg(u) du,
Q

(2)

Remark 1. In this form, Theorem 1 is closely related to the following
theorem of de la Vallee Poussin:
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Let F(x) be continuous in [a, bl, finite, and such that

lim (F(x - t) - 2F(x) + F(x - t»/t 2 = g(x)
t->o+

exists finitely for all x E (a, b), with g(x) integrable. Then

,.X ... UI

F(x) = C1x + C2 + J dU1 J g(u2) dU2 ,
a a
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where C1 and C2 are some constants.
We shall prove Theorem I by reducing it to a generalized version of this

result.
In the proof of Theorem I we shall use three lemmas which are of interest

in their own right. Lemma 3 may be considered a generalization of
Rajchman's lemma (cf. [10, p. 353]).

LEMMA 1. LetfE L27T • For every xfor which limr->l-f(r, x) = c(x) exists
finitely, we have

1· . f 1 J"' <p(x, u) d Ii fer, x) - c(x)
1m 10 -4 . 2 /2 u ~ m 15->0+ 7T a SIn u r->l- - r

1· I rTf <p(x, u) d
~ 1m sup -4 ~/2- u,

a->o+ 7T, 5 sIn u
(3)

where <p(x, u) = f(x + u) - 2c(x) + f(x - u). In particular, (3) holds for
almost all x, with c(x) replaced by f(x).

Proof Let x be a point for which limr->l-f(r, x) = c(x) exists finitely.
For brevity, we shall denote by Whlf](X) and [Dhlf](X) the extreme left and
the extreme right side of (3), respectively. We shall only verify the right
inequality of (3).

If [D{Ilf](X) = + 00, there is nothing to prove. Suppose d = [D{llf](X) is
finite. Given E > 0, there exists a So = SO(E) > 0 such that

I J"' <p(x, u)
-4 . 2 /2 du < d + E

7T 5 SIn U

for 0 < S < So • On the other hand,

fer, x) - c(x) = _1_ rTf (x u) I + r du
1 - r 27T • 0 <p, 1 - 2r cos u + r 2

= 1 + r IJao
--"- J"' i <p(x, u) 1 - cos u du

47T ! 0 ' ao\ sin2 u/2 1 - 2r cos u + r 2

= 11(r) + Iir).
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Since the function
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(u) = (1 + r)(1 - cos u)
Pr 1 - 2r cos 1I + r 2 (0 < r < 1) (4)

is monotonically increasing on 0 < u < 7T, with Pr(O) = 0 and P,(7T) =
2/(1 + r), we obtain by the second law of means for integrals

I (r) = P1'(oo) J'oo ~(x, u) du
1 47T or sm2 u/2

I 1 oTT ~(X, U) I
<P,.(OO) d+ E - -4 J . 2 /2 du l ,7T 00 sm u

Moreover, since as r ~ 1-p,(u) converges to 1 uniformly in 0 < 00 < u < 7T,
we get

1· I () - d 1 JOTT
~(x, u) d1m sup 1 r ~ + E - -4 . 2 /2 u

r ....C 7T 00 sin u

and, for the second integral,

I" l() 1 JTT ~(x,u) d1m 2 r = -4 -'-2-/2- u.
r-->l- 7T 00 sin u

Hence

I · fer, x) -- c(x) - d +
1m sup 1 ~ E,

'r....C - r

for every E > O.
In case [D(I}f](x) = - co, one proves that

I" fer, x) - c(x) ----- K
1m sup 1 ~

1'....1- - r

for every real constant K. This proves the right part of inequality (3).
Finally, it is well known that almost everywhere lim1'-->l- fer, x) exists

finitely and equals f(x); this takes care of the last statement of the lemma.

LEMMA 2. Let f E L 2TT , and let

'"
g(r, x) = - L: rkkAk(x)

k=1
(0 < r < I), (5)

i.e., g(r, x) = -r'(r, x). For any fixed x for which limr-->l-f(r, x) = c(x)
exists finitely, we have

!~~ g(r, x) < !~~ fer,;~ c(x) < li~l~up g(r, x).
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Proof By definition of the function g(r, x),

I
I d

fer, x) - c(x) = g(p, x)~ ,
T P

whenever it is meaningful. The rest of the proof is clear.

LEMMA 3. Let f E L2TT , and let
00

F(x) = C + L Ak(x)lk,
k=1
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(6)

whenever the sum converges. If limT -->I- fer, Xo) = c(xo) exists finitely, then

and

[D2F]( ) ---- l' fer, Xo) - C(Xo)_ Xo "'" 1m sup 1
T-->I- -- r

(7a)

(7b)

where [!?2F](XO) and [.D2F](xo) are, respectively, the lower and upper second
Riemann derivative ofF(x) at x = Xo .

By Tauber's first theorem (cf. [8, p. 149]), series (6) converges whenever
limT.... l - F(r, x) exists finitely, in particular, for all x for which limr-->l- fer, x)
exists finitely. Moreover, since by the saturation theorem, part (a),

1 ITT 1F(x) = C + -2 f(x - u) log 4 . 2 12 du
1T -TT sm u

a.e.,

and since the logarithmic function under the integral sign belongs to every
L~TT' 1 .:'( p < OJ, F(x) is continuous whenever f belongs to some £iTT'
1 < p .:'( 00.

Remark 2. By replacing {fer, Xo) - c(xo)}/(l - r) by g(r, x) in (7a) and
(7b), we obtain Rajchman's lemma. However, Rajchman proved his lemma
under the weaker condition that the function F(x) defined in (6) is a Fourier
series which is Abel summable at x = Xo , while in our case the associated
series L~ A",(x) is already a Fourier series which is Abel summable at x = Xo .

Proof It is enough to prove one of the inequalities (7), say (7a). Without
loss of generality we may suppose that .r:TTf(x) dx = 0, Xo = 0, and F(x) is
even. The desired inequality will then follow, if we can prove that, for any m,
[!?2F](0) > m implies

. I II . dphmsup -1 11. g(p,O)-;;:::: m,
T->C og r T p
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(log(l/r) r-- 1 - r as r ~ 1-). Replacing F(x) by F(x) - m(l - cos x), we
may further assume that m = O.

Suppose that W2.F](0) > 0 and that, contrary to what we want to prove,

. 1.1 dp
hm sup -I-1/- j g(p, 0) - < O.,...,e og r,. p

(8)

(The argument up to this point is Rajchman.) With G(r) = F(r, 0),
rG'(r) = fer, 0), assumption (8) implies that there are E > 0 and 0 < ro < 1
such that

rG'(r) - G'(l) < -E log l/r,

where G'(l) = limT->1-f(r, 0) = c(O). Moreover,

ro < r < 1,

G(l) - G(r) - log(l/r) G'(I) = II {pG'(p) - G'(l)} dp
r p

E< - 2log2(l/r), ro < r < 1,

or

o < lim inf(2/log21/r){G(r) - G(l) + log(l/r) G'(l)}.
r-+1-

We shall prove that this inequality is false. Indeed, we prove that

lim sup (2/log2 l/r){G(r) - G(l) + 10g(1/r) G'(l)} < O.
T-+l-

By Lemma 2 we obtain immediately

lim G(r) - G(l) = -G'(l).
r...,e log I/r

Furthermore, a moment's reflection shows that, by our hypothesis on F(x)
at x = 0,

I· I I7I
eJ>(u) d G'(l)

1m -4 . 2 /2 u = -
~..,o+ 1T ~ sin u

by virtue of Lemma 1 and the previous formula. Here,

eJ>(u) = F(u) - 2F(0) + F(-u) = 2F(u).

Thus, for each 0 < r < 1,

I(r) = (2/1og2 l/r){G(r) - G(l) + 10g(l/r) G'(l)}

2 r \ 1 - r 1 J"7I eJ>(u) ( ) d 1 f71 eJ>(u) d!
= log l/r ~~~ I log l/r 41T ~ sin2u/2 P.. u u - 41T ~ sin2u/2 u \'
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where the function Pr(u) is given by (4). Setting

2 (1 - r)2(1 + cos u)
qr(u) = 1 + r - Pr(u) = (l + r)(1 - 2r cos u + r 2)
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(qr(U) is nonnegative and 0[(1 - r )2] as r ---+ 1-, uniformly in u in any interval
o < 00 ,s;: U ,s;: 7T), we have

2(1 - r). 1 j''lT cI>(u)
I(r) = - 1 21/ hm -4 . 2 /2 q,(u)duog r 3->0+ 7T 8 sm u

+~(' l-r _2_- 1)G'(l)
log l/r log llr 1 + r .

The hypothesis [p2F](0) > 0 implies that, for some € > 0 and 00 = oo(€) > 0,
cI>(u)/sin2 u/2 > € for all 0 < U < 00 • Hence

1 ,80 cI>(u) € j,30

-4 j . 2 /2 qr(u) du > -4 qr(u) du
7T 3 sm u 1T' 8

and, consequently,

2(1 - r) \ € f80 1 J''lT cI>(u) !
I(r) < - 10g2 l/r I 41T' 0 q,(u) du + 41T' 8

0
sin2 u/2 qr(u) du\

_2_ ( 1 - r _2__ 1) G'(I)+ log l/r log l/r 1 - r .

Since (1/41T') f~ qr(u) du = (1 - r)/4(1 + r) and since

lim _2_ ( 1 - r _2__ 1) = 0
r....C log l/r log l/r 1 - r '

we obtain by Lebesgue's dominated convergence theorem that

lim sup I(r) ,s;: -€/4 < O.
r-+l-

which proves the lemma.

Proof of Theorem 1. Since limr->l- f(r, x) = f(x) for all x in (a, b),
F(x) is well-defined in (a. b) (see Remark 1). If, in particular, F(x) is continuous
in (a, b), then the theorem is an immediate consequence of Lemma 3 and the
following result of de la Vallee Poussin [10, p. 327]:

Let F(x) be a continuous function on some interval a < x < b, and let g(x)
be finite valued and integrable on the same interval. If, for each x,

(9)
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then
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(11)

X Ul

F(x) = f dU1 f g(U2) dU2+ C1x + Cz , (10)
a a

where C1 and C2 are constants.
Indeed, by Fatou's theorem [l0, p. 99], (10) implies (2).
It remains to prove the continuity of F(x) in (a, b). This, however, follows

by the same arguments used in proving Verblunsky's uniqueness theorem for
Abel summable trigonometric series, as given in [10, p. 355].

3

A consequence of Theorem 1 is the following pointwise analog of part (a)
of the saturation theorem.

THEOREM 2. Let f(x) be a finite-valued function in L2rr such that
lim""1- fer, x) = f(x) for all x. If the limit

1· fer, x) - f(x) ( )
1m 1 =gx

r-.1- - r

exists for all x, with g(x) integrable, then for almost all x

rex) = c - r g(u) du,
• -rr

where
l.rr X

C = 21T J-rr dx f-Tr g(u) duo

If, in particulm, g(x) = 0 for all x, then f(x) is a constant.

It is quite simple to prove that relation (l) in the saturation theorem is
equivalent to

lim II g(r, .) - g(')llx
2Tr

= 0,
r~l-

g(r, x) being given by (5). If we replace (II) by the stronger condition

lim g(r, x) = g(x),
T-4!-

then Theorem 2 reduces to Verblunsky's theorem, which states that the
trigonometric series

(12)
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is the Fourier series of g. However, Verblunsky proved his result under the
condition that the coefficients of (12) are o(k), which is trivially satisfied in
our case (see [10, p. 352 fr.]).

COROLLARY 1. For continuous functions f(x), Theorem 2 remains true if
(11) is satisfied for all x except a denumerable set ofpoints.

Proof In this case, the associated function F(x) of f(x) is smooth
(F E Lip*(1, C27T» and, for smooth functions, de la Vallee Poussin's result
remains true even if (9) is violated in a denumerable set of points.

Finally we obtain, as an immediate consequence of the saturation theorem
and Lemma 2, the following theorem.

THEOREM 3. Let f E L27T • If f- is absolutely continuous, then for almost
all x,

lim f(r, x) - f(x) = -r'(x).
r->C I - r

More generally, ifr E BV27T , then

1
· f(r, x) - f(x)1m =-..:..--,-:.o..-~-,--,-

r->C 1 - r

exists almost everywhere.
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